DEBATE MATEMÁTICO EN LA RED

El empate en la asamblea de la CUP: 

hipótesis diferentes, resultados diferentes

  • El equipo de Big Data y Data Science de La Vanguardia da su respuesta a la discusión de las probabilidades 
  • de empate técnico cupero del domingo
El empate en la asamblea de la CUP: hipótesis diferentes, resultados diferentesAsistentes a la Asamblea Nacional abierta de la CUP en Sabadell. (Alberto Estévez - EFE)
Barcelona 
29/12/2015 07:23 | Actualizado a 29/12/2015 08:06

El empate técnico a 1.515 votos que se produjo este pasado domingo en la asamblea de la CUP ha generado un intenso debate en las redes sociales. La Vanguardia se hizo eco este lunes de esta discusión y hoy añade la respuesta del equipo de Big Data y Data Science del diario, que seguro arrojará nueva luz a este problema.

De este modo, se puede afirmar que se ha llegado a dos resultados diferentes porque se ha partido de dos hipótesis diferentes aunque en los dos casos el razonamiento matemático que se ha hecho después es válido. Por lo tanto, según los expertos en análisis de datos del diario, “la discusión tendría que ser más bien sobre cuál es la hipótesis más adecuada para este contexto”.

Para ello establecen dos casos. Son los siguientes:

Caso 1 (cálculo de Mario Bilbao, catedrático de la Universidad de Sevilla): la hipótesis que ha hecho es que cualquier resultado de la votación es igual de probable, es decir, que era igual de probable que el resultado fuera 3030-0, 0-3030, 1515-1515, 1714-1316, etcétera, y dado que esto daría lugar a 3031 resultados posibles, aplicando la regla de Laplace concluye que la probabilidad de 1515-1515 es 1/3031 = 0.00033. Si esta hipótesis fuera realista en el caso de la votación de la CUP, entonces la aplicación de la regla de Laplace sería correcta y por lo tanto el resultado también. El problema viene de que esta hipótesis en este contexto no se ajusta bastante bien: seria como decir que podemos sustituir la Asamblea de la CUP por un bombo de lotería que generara aleatoriamente uno de los resultados. Al margen de esto, el catedrático Mario Bilbao en el análisis de su resultado ha usado incorrectamente el término “imposible”. En Teoría de la Probabilidad, se define como acontecimiento imposible aquel que tiene probabilidad igual a 0.

Caso 2 (cálculo mediante la distribución binomial): la hipótesis que se hace es que cada persona vota SÍ o NO con probabilidad 50% e independientemente de lo que hayan votado el resto de personas de la Asamblea. Teniendo en cuenta que el voto fue secreto podríamos decir que no es del todo descabellado asumir que los votos son independientes el uno del otro (si se hubiera hecho a mano levantada seguramente el voto de muchas personas sí que hubiera sido condicionado al del resto). En cuanto a que la probabilidad de votar SÍ o NO sea realmente un 50%, podemos decir que tampoco parece descabellado a la vista de los resultados. En este caso, aplicando la función de probabilidad de la distribución binomial obtenemos que la probabilidad de 1515-1515 es 0.01449. Esta hipótesis, sin embargo, a pesar de parecer que se ajustaría mejor al contexto de la votación de la CUP, también tiene puntos débiles: seria cómo si cada cual votara echando una moneda al aire.

En opinión del equipo de Big Data y Data Science de La Vanguardia, “a pesar de que en los dos casos las hipótesis no sean 100% realistas, opinamos que el Caso 2 se ajustaría mejor a la realidad”.